Collisions between particles induced by a regular language in complex elemental cellular automata

Genaro Juárez Martínez

http://uncomp.uwe.ac.uk/genaro/

Unconventional Computing Group
Faculty of Computing, Engineering and Mathematical Sciences
University of the West of England
Bristol, United Kingdom

1st International Workshop on Natural Computing – IWNC

December 14-15, 2006

1 genarojm@correo.unam.mx
Part I

Preamble
Abstract

We show the existence of a regular particle-based language in an elemental complex cellular automaton. We apply de Bruijn diagrams and tiles theory to determine the formal language and a full description of the evolution space characterized by triangles respectively. Particularity, we research Rule 110. Consequently, we propose a novel way to code initial conditions in Rule 110 and solving some interesting problems as: self-organization and the reproduction of a cyclic tag system. Finally, we discuss some others results and open problems in Rule 110.
Stages of most popular contributions

John von Neumann (December 28, 1903 - February 8, 1957)
Precursor of cellular automata, universal constructor, self-reproduction, universality

John Horton Conway (December 26, 1937 - ?)
The Game of Life, system of gliders, spatial universality

Stephen Wolfram (August 29, 1959 - ?)
One-dimensional CA, classes, complexity, languages

Matthew Cook (February 7, 1970 - ?)
Minimum universality in CA, Rule 110, cyclic tag systems
Part II

One-dimensional cellular automata
Cellular automata

Cellular automata are discrete dynamical systems evolving into an infinite regular lattice.

Definition

A cellular automaton CA is a 4-tuple $A = \langle \Sigma, u, \varphi, c_0 \rangle$ evolving in d-dimension, where $d \in \mathbb{Z}^+$. Such that:

- Σ represents the alphabet
- u the local connection, where,
 $$u = \left\{ x_{0,1,\ldots,n-1:d} | x \in \Sigma \right\},$$
 therefore, u is a neighborhood
- φ the local function, such that, $\varphi : \Sigma^u \rightarrow \Sigma$
- c_0 the initial condition, such that, $c_0 \in \Sigma^\mathbb{Z}$

Also, the local function induces a global transition between configurations:

$$\Phi_\varphi : \Sigma^\mathbb{Z} \rightarrow \Sigma^\mathbb{Z}.$$
Dynamics in one dimension

- Central cell
- Left neighbor
- Right neighbor
- Neighborhood

\[x_0 \cdots x_{t-1} \implies x_0 \bowtie x_{t-1} \implies \cdots \]

\[x_0 \ x_{t-1} \cdots \]

\[t \]

\[t+1 \]

\[t+n \]
Wolfram’s classes

Karel Culik II defines these classes in the next way:

Classes

- A CA is class I, if there is a stable state $x_i \in \Sigma$, such that all finite configurations evolve to the homogeneous configuration.
- A CA is class II, if there is a stable state $x_i \in \Sigma$, such that any finite configuration become periodic.
- A CA is class III, if there is a stable state, such that for some pair of finite configurations c_i and c_j with the stable state, is decidable if c_i evolve to c_j.
- Class IV includes all CA.

Thus, Class I \subset Class II \subset Class III \subset Class IV. Finally, Culik establishes that it is undecidable to determine the class of every CA. In particular, the Elemental Cellular Automata (ECA) named for Wolfram are all CA of order ($k = 2, r = 1$). Where $|\Sigma| = k$ and $u = 2r + 1$.

Karel Culik II and Sheng Yu
Undecidability of CA Classification Schemes
Wolfram’s classes

Figure: Wolfram’s classes in elemental cellular automata. Initial random density of 0.5, to 414 cells in 238 times.
Part III

Rule 110
History in Rule 110

The one-dimensional binary cellular automaton numbered Rule 110 in Stephen Wolfram’s system of identification has been an object of special attention due to the structures or gliders which have been observed in evolution samples from random initial conditions. It has even been suggested that Rule 110 belongs to the exceptional class IV of automata whose chaotic aspects are mixed with regular behaviors; but in this case the background where the chaotic behavior occurs is textured rather than quiescent, a tacit assumption in the original classification. Whatever the merits of this classification, Rule 110 was awarded its own appendix (Table 15, see book below). It contains specimens of evolution including a list of thirteen gliders compiled by Doug Lind. Also, Wolfram presents the conjecture that the rule could be universal.

Stephen Wolfram

Theory and Applications of Cellular Automata

Wentian Li and Mats G. Nordahl
Transient behavior of cellular automaton rule 110
History in Rule 110

In November 1998 at the Santa Fe Institute Matthew Cook demonstrates that Rule 110 is Universal! Simulating a novel cyclic tag system.

Matthew Cook
Introduction to the activity of rule 110 (copyright 1994-1998 Matthew Cook)

Harold V. McIntosh
Rule 110 as it relates to the presence of gliders

Stephen Wolfram
A New Kind of Science

Harold V. McIntosh
Rule 110 Is Universal!

Matthew Cook
Universality in Elementary Cellular Automata
Rule 110

Rule 110 is an elemental cellular automaton. The local function determining the behavior is:

\[
\begin{align*}
\phi(0,0,0) &\rightarrow 0 & \phi(1,0,0) &\rightarrow 0 \\
\phi(0,0,1) &\rightarrow 1 & \phi(1,0,1) &\rightarrow 1 \\
\phi(0,1,0) &\rightarrow 1 & \phi(1,1,0) &\rightarrow 1 \\
\phi(0,1,1) &\rightarrow 1 & \phi(1,1,1) &\rightarrow 0
\end{align*}
\]

Table: Evolution rule 110 – \((01101110)_2\).

Figure: Random evolution in Rule 110. Initial density of 0.5, to 474 cells in 182 times.
System of particles

Rule 110 have a complicated system of gliders. The figure show single, package and extensible gliders. Including the extensible glider gun!

<table>
<thead>
<tr>
<th>A 2A A^4 A^7</th>
<th>B 4B B̂ 3B B̂^2 B̂^3 B̂ 2B B̂^2 B̂^3 C</th>
<th>3C_1 C_2 C_3 3C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1 D_2 D_3</td>
<td>E 3E E^3 E^4 Ė 3Ė F 3F</td>
<td>2G G^2 G^4 H 3H</td>
</tr>
<tr>
<td>gun</td>
<td>gun^1</td>
<td>gun^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rule 110
Antecedents
Dynamic in Rule 110
Regular language particles-based
Applying the regular language
More contributions in Rule 110
Discussion
Acknowledgements
The End
System of particles

<table>
<thead>
<tr>
<th>structure</th>
<th>margins left - right</th>
<th>v_g</th>
<th>width</th>
<th>cap</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_r</td>
<td>1 . 1 . 1</td>
<td>$2/3 \approx 0.666666$</td>
<td>14</td>
<td>T</td>
</tr>
<tr>
<td>e_l</td>
<td>. 1 . 1 .</td>
<td>$-1/2 = -0.5$</td>
<td>14</td>
<td>T</td>
</tr>
<tr>
<td>A</td>
<td>. 1 . 1 . 1</td>
<td>$2/3 \approx 0.666666$</td>
<td>6</td>
<td>T</td>
</tr>
<tr>
<td>B</td>
<td>1 . 1 . 1</td>
<td>$-2/4 = -0.5$</td>
<td>8</td>
<td>P</td>
</tr>
<tr>
<td>B^n</td>
<td>3 . 3 . .</td>
<td>$-6/12 = -0.5$</td>
<td>22</td>
<td>T</td>
</tr>
<tr>
<td>\hat{B}^n</td>
<td>3 . 3 . .</td>
<td>$-6/12 = -0.5$</td>
<td>39</td>
<td>T</td>
</tr>
<tr>
<td>C_1</td>
<td>1 1 1 1 1</td>
<td>$0/7 = 0$</td>
<td>9-23</td>
<td>P</td>
</tr>
<tr>
<td>C_2</td>
<td>1 1 1 1 1</td>
<td>$0/7 = 0$</td>
<td>17</td>
<td>P</td>
</tr>
<tr>
<td>C_3</td>
<td>1 1 1 1 1</td>
<td>$0/7 = 0$</td>
<td>11</td>
<td>P</td>
</tr>
<tr>
<td>D_1</td>
<td>1 1 2 1 2</td>
<td>$2/10 = 0.2$</td>
<td>11-25</td>
<td>P</td>
</tr>
<tr>
<td>D_2</td>
<td>1 1 2 1 2</td>
<td>$2/10 = 0.2$</td>
<td>19</td>
<td>P</td>
</tr>
<tr>
<td>E^n</td>
<td>3 1 3 1 1</td>
<td>$-4/15 \approx -0.266666$</td>
<td>19</td>
<td>P</td>
</tr>
<tr>
<td>E</td>
<td>6 2 6 2 2</td>
<td>$-8/30 \approx -0.266666$</td>
<td>21</td>
<td>P</td>
</tr>
<tr>
<td>F</td>
<td>6 4 6 4 4</td>
<td>$-4/36 \approx -0.111111$</td>
<td>15-29</td>
<td>P</td>
</tr>
<tr>
<td>G^n</td>
<td>9 2 9 2 2</td>
<td>$-14/42 \approx -0.333333$</td>
<td>24-38</td>
<td>P</td>
</tr>
<tr>
<td>H</td>
<td>17 8 17 8 8</td>
<td>$-18/92 \approx -0.195652$</td>
<td>39-53</td>
<td>P</td>
</tr>
<tr>
<td>glider gun</td>
<td>15 5 15 5</td>
<td>$-20/77 \approx -0.259740$</td>
<td>27-55</td>
<td>P</td>
</tr>
</tbody>
</table>

Table: Properties of each glider in Rule 110.
Formal languages

The formal languages theory provides a way to study sets of chains from a finite alphabet. The languages can be seen as inputs for some classes of machines or as the final result from a typesetter substitution system i.e., a generative grammar into the Chomsky's classification.

<table>
<thead>
<tr>
<th>language</th>
<th>structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>recursively enumerated</td>
<td>Turing machine</td>
</tr>
<tr>
<td>context sensitive</td>
<td>linear bounded automata</td>
</tr>
<tr>
<td>context free</td>
<td>pushdown automata</td>
</tr>
<tr>
<td>regular</td>
<td>finite automata</td>
</tr>
</tbody>
</table>

Lyman P. Hurd
Formal Language Characterizations of Cellular Automaton Limit Sets

Stephen Wolfram
Computation Theory on Cellular Automata
Communication in Mathematical Physics 96:15-57, November 1984.

John E. Hopcroft and Jeffrey D. Ullman
Introduction to Automata Theory Languages, and Computation
Formal languages

The basic model necessary for the languages of these machines (and for all computation), is the Turing machine. The machines recognizing each family of languages are described as a Turing machine with restrictions. In general, a sequential machine is a finite automata and in particular a regular language can be recognized by a finite automaton, a device with a finite number of internal states and with state transitions labeled by symbols from a finite alphabet. Thus, the sets of regular expressions on an alphabet are defined recursively as:

1. ϕ is the regular expression representing the empty set.
2. ϵ is the regular expression describing the set $\{\epsilon\}$.
3. For each symbol $x \in \Sigma$, x is a regular expression depicting the set $\{x\}$.
4. If x and y are regular expressions representing languages Σ_i and Σ_j respectively, then $(x + y)$, (xy), and (x^*) are regular expressions representing $\Sigma_i \cup \Sigma_j$, $\Sigma_i\Sigma_j$ and Σ_i^* respectively.

When it is necessary to distinguish between a regular expression x and the language determined by x, we shall use L_x.

Mats G. Nordahl

Formal languages and finite cellular automata

Figure: The first machine can read any word of language L_{R110}^+ but only accepts ether configurations. The second machine only reads and accepts ether and A gliders. Nevertheless, the limitation is that both machines only can identify a phase for every particle.
The de Bruijn diagram

For an one-dimensional cellular automaton of order \((k, r)\), the de Bruijn diagram is defined as a directed graph with \(k^{2r}\) vertices and \(k^{2r+1}\) edges. The vertices are labeled with the elements of the alphabet of length \(2r\). An edge is directed from vertex \(i\) to vertex \(j\), if and only if, the \(2r - 1\) final symbols of \(i\) are the same that the \(2r - 1\) initial ones in \(j\) forming a neighborhood of \(2r + 1\) states represented by \(i \odot j\). In this case, the edge connecting \(i\) to \(j\) is labeled with \(\varphi(i \odot j)\).

The connection matrix \(M\) corresponding with the de Bruijn diagram is as follows:

\[
M_{i,j} = \begin{cases}
1 & \text{if } j = ki, ki + 1, \ldots, ki + k - 1 \pmod{k^{2r}} \\
0 & \text{in other case}
\end{cases}
\]

(1)

Harold V. McIntosh

Linear cellular automata via de Bruijn diagrams

Burton H. Voorhees

Computational analysis of one-dimensional cellular automata

The de Bruijn diagram

Paths in the de Bruijn diagram may represent chains, configurations or classes of configurations in the evolution space.

Figure: de Bruijn diagram for Rule 110.

Now we must discuss another variant where the de Bruijn diagram can be extended to determine greater sequences by the period and the shift of their cells in the evolution space in Rule 110. A problem is that the calculation of extended de Bruijn diagrams grows exponentially with order $k^{2r^n} \forall n \in \mathbb{Z}^+$.
The de Bruijn diagram

The extended de Bruijn diagrams\(^2\) calculate all the periodic sequences by the cycles defined in the diagram. These ones also calculate the shift of a periodic sequence for a certain number of steps; thus we can get de Bruijn diagrams describing all the periodic sequences characterizing a glider in Rule 110.

\[\text{Figure: de Bruijn diagram calculating A glider and ether.}\]

\(^2\)The de Bruijn diagrams were calculated with the NXLCAU21 system developed by McIntosh for NextStep operating system (OpenStep and LCAU21 to MsDos). Application and code source are available from: http://delta.cs.cinvestav.mx/~mcintosh/oldweb/software.html
The de Bruijn diagram

In the figure we have two cycles: a cycle formed by vertex 0 and a large cycle of 26 vertices which is composed as well by 9 internal cycles. The evolution of the right illustrates the location of the different periodic sequences producing the A glider in distinct numbers. Following the paths through the edges we obtain the sequences or regular expressions determining the phases of the A glider. For example, we have cycles formed by:

I. The expression \((1110)^*\), vertices 29, 59, 55, 46 determining \(A^n\) gliders.

II. The expression \((111110)^*\), vertices 61, 59, 55, 47, 31, 62 defining \(nA\) gliders with a \(T_3\) tile between each glider.

III. The expression \((1111000100110)^*\), vertices 13, 27, 55, 47, 31, 62, 60, 56, 49, 34, 4, 9, 19, 38 describing ether configurations in a phase (in the following subsection we will see that it corresponds to the phase \(e(f_{1.1})\)).

The cycle with period 1 represented by vertex 0 produces a homogenous evolution with state 0. The evolution of the right shows different packages of \(A\) gliders, the initial condition is constructed following some of the seven possible cycles of the de Bruijn diagram or several of them. We can select the number of \(A\) gliders or the number of intermediate tiles \(T_3\) changing from one cycle to another.
The de Bruijn diagram

Figure: Patterns calculated by de Bruijn diagrams up to 10 generations. Calculating A, B, C and D gliders, tiles and several periodic meshes.
Tiles

A plane of tiles \mathcal{T} is a countable family of closed sets $\mathcal{T} = \{T_0, T_1, \ldots\}$ covering the plane without intervals or intersections. Defined as a join of sets (called a mosaic \mathcal{T}):

$$\mathcal{T} = \bigcup_{i=0}^{n} T_i \forall \ n \in \mathbb{Z}_0^+ \quad (2)$$

The “plane” is the Euclidian plane $\mathbb{Z} \times \mathbb{Z}$ in elementary geometry. Rule 110 covers the evolution space through different sets of triangles $T_n \forall \ n \in \mathbb{Z}_0^+$, where n represent the size of the triangle counting the cells in some of its internal sides.

<table>
<thead>
<tr>
<th>T_0</th>
<th>T_1</th>
<th>T_2^α</th>
<th>T_2^β</th>
<th>T_3^α</th>
<th>T_3^β</th>
<th>T_4^α</th>
<th>T_4^β</th>
<th>T_5^α</th>
<th>T_5^β</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Phases f_{i-1}

Figure: Determining phases in Rule 110.
Phases $f_{i,j}$

The phases represent the periodic sequences (regular expressions of each glider) of finite length in the de Bruijn diagram. It is important to indicate that an alignment of a phase determines a set of regular expressions and another alignment defines another set of them. Cook determines two measures in the evolution space: horizontal \downarrow^i and vertical \uparrow^i. We only determine the horizontal case $f_{i,1}$. Phases $f_{i,1}$ have four sub-levels consequence of the phases in T_3 tile and each phase can be aligned i times generating all the possible phases (right part).

\[
\begin{align*}
\text{phases level one} \left(\mathcal{F}_1 \right) & \rightarrow \{f_{1,1}, f_{2,1}, f_{3,1}, f_{4,1}\} \\
\text{phases level two} \left(\mathcal{F}_2 \right) & \rightarrow \{f_{1,2}, f_{2,2}, f_{3,2}, f_{4,2}\} \\
\text{phases level three} \left(\mathcal{F}_3 \right) & \rightarrow \{f_{1,3}, f_{2,3}, f_{3,3}, f_{4,3}\} \\
\text{phases level four} \left(\mathcal{F}_4 \right) & \rightarrow \{f_{1,4}, f_{2,4}, f_{3,4}, f_{4,4}\}
\end{align*}
\]

Table: Four sets of phases \mathcal{F}_i in Rule 110.

Variable f_i indicates the phase currently used where the second subscript i (forming notation $f_{i,j}$) indicates that selected set \mathcal{F}_i of regular expressions.
Phases f_{i-1}

Finally, our notation codifies initial conditions by phases is in the following way:

$$\#_1(\#_2, f_{i-1})$$

where $\#_1$ represents the glider according to Cook’s classification and $\#_2$ the phase of the glider if it has a period greater than four. We must indicate that the arrangement by capital letters for the $\#_2$ parameter into the OSXLCAU21 system does not have a particular meaning; it is only used to give a representation at the different levels for phases with gliders of periods module four.

3 The OSXLCAU21 system have implemented a special panel for code initial conditions with all possible phases to each glider. The application and source are available from: http://uncomp.uwe.ac.uk/genaro/OSXCASystems.html. Also you can see a practical introduction explaining our system in http://uncomp.uwe.ac.uk/genaro/papers/OSXLCAU21/OSXLCAU21.html
Phases f_{i-1}

Now we determine the phases f_{i-1} for A and B gliders as the figure illustrates. T_3 tiles determine a phase $\#_1$; in the case of A and B gliders only a T_3 tile is necessary to describe their structure. In all the others cases, at least two T_3 tiles are needed.

Figure: Phases f_{i-1} for A and B gliders respectively.
Phases f_{i-1}

Following each phase initiated by every T_3 tile, the phases f_{i-1} for the A glider are as follows:

- $A(f_{1-1}) = 111110$
- $A(f_{2-1}) = 11111000111000100110$
- $A(f_{3-1}) = 11111000100110100110$

In general for every structure with negative speed, the phase $f_{4-1} = f_{1-1}$, for this reason the phase is not written. Each periodic sequences defined by T_3 tiles conserves the regular expression property when basic rules are applied. Therefore, $\epsilon, A(f_{1-1}), A(f_{1-1})+A(f_{1-1}), A(f_{1-1})-A(f_{1-1}), A(f_{1-1})^*$ and $A(f_{3-1})-A(f_{1-1})-A(f_{2-1})-A(f_{3-1})-A(f_{2-1})$ are regular expressions (we use ‘-’ to represent the concatenation operation in our constructions). Let us remember the codification in phases, A indicates the glider ($\#_1$) and f_{i-1} indicates the phase. Also, all phases f_{i-1} for the B glider are:

- $B(f_{1-1}) = 11111010$
- $B(f_{2-1}) = 11111000$
- $B(f_{3-1}) = 1111100010011000100110$
- $B(f_{4-1}) = 11100110$
The complete subset of regular expressions Ψ_{R110} for each glider in Rule 110 (see Appendix of our paper), serves as input data for the OSXLCAU21 system. So, is available from a digital file in:

http://uncomp.uwe.ac.uk/genaro/rule110/listPhasesR110.txt

Genaro Juárez Martínez, Harold V. McIntosh, Juan C. Seck Tuoh Mora and Sergio V. Chapa Vergara
Determining a regular language by glider-based structures called phases f_{i-1} in Rule 110
Subset diagram

How to validate our regular language L_{R110} based in particles?

Figure: Subset diagram in Rule 110. Any sequence of Ψ_{R110} must follow a way into of the subset diagram begin from the biggest state. Other relevant properties is that besides the diagram determines Garden of Eden configurations, two minimal sequences are: $(101010)^*$ and $(01010)^*$.

Harold V. McIntosh

One Dimensional Cellular Automata

by publish, 2007
Self-organization and synthesis of particles

We have demonstrated that all gliders can be produced by a collision from others gliders.
Our second paper, show a full description of several collisions to each glider synthesis of gliders in Rule 110, some of them with natural gliders. Too, some very complicated and rare extensible gliders.

http://uncomp.uwe.ac.uk/genaro/rule110/glidersRule110.html

Genaro Juárez Martínez, Harold V. McIntosh and Juan C. Seck Tuoh Mora
Production of gliders by collisions in Rule 110

Lecture Notes in Computer Science 2801:175-182, 2003

Genaro Juárez Martínez, Harold V. McIntosh and Juan C. Seck Tuoh Mora
Gliders in Rule 110

Reproducing the function of cyclic tag system

As an advance of our present work, we show the cyclic tag system inside the evolution space of Rule 110. This incredible result is reconstructed using our regular language for Rule 110. You can find some differences from A New Kind of Science, because it has mistakes that do not allow a good reconstruction. The mistakes were clarified by Cook in November 2002 (personal communication).

http://uncomp.uwe.ac.uk/genaro/rule110/ctsRule110.html

Writing the sequence 1110111 on the tape of the cyclic tag system and a leader component at the end with two solitons. Our reconstruction is developed over an evolution space of 56,240 cells in 57,400 generations, i.e., a space of 3,228,176,000 cells with a computer Pentium II to 233 mhz, operating system OpenStep and 256MB of RAM, February 2003. Collaborations of Harold V. McIntosh and Juan C. Seck Tuoh Mora.

Genaro Juárez Martínez, Harold V. McIntosh, Juan C. Seck Tuoh Mora and Sergio V. Chapa Vergara
Reproducing the cyclic tag systems developed by Matthew Cook with Rule 110 using the phases f_{i-1}

preprint available from http://uncomp.uwe.ac.uk/genaro/papers.html
More contributions in Rule 110

Universality

Turlough Neary and Damien Woods
P-completeness of cellular automaton Rule 110

Mirko Rahn
Universalität in Regel 110

Universality and cyclic tag systems

Kenichi Morita
Simplifying Universal One-Dimensional Reversible Cellular Automaton
Infinite Configurations
Conference at the Automata 2006, Hiroshima University, 2006.

Kenichi Morita
Simple Universal One-Dimensional Reversible Cellular Automata
More contributions in Rule 110

Gliders and tiles

Harold V. McIntosh
A Concordance for Rule 110

Genaro Juárez Martínez and Harold V. McIntosh
ATLAS: Collisions of gliders like phases of ether in Rule 110

Genaro Juárez Martínez
Introduction to Rule 110

Rule 110 objects

Genaro Juárez Martínez, Harold V. McIntosh, Juan C. Seck Tuoh Mora and Sergio V. Chapa Vergara
Rule 110 objects and other construccions based-collisions

4A full list of references, advances and related topics in Rule 110 is available from http://uncomp.uwe.ac.uk/genaro/rule110.html
Discussion

Final commentaries
Several questions arise because it seems that the evolution of Rule 110 language should always be regular. For instance:

- How a regular language can be able of constructing a universal machine?
- Could Rule 110 determine new grammars?
- Could we project this language to two-dimensional finite-state automata?
- Could Rule 110 be able of implementing unconventional logic operations by glider-based reactions?
- Could Rule 110 support a Turing machine, universal constructor and self-reproduction? Also, with a system of gliders.

Well, it is only the beginning!
Acknowledgements

- EPSRC grant reference: EP/D066174/1
- Faculty of Computing, Engineering and Mathematical Sciences
- University of the West of England
- Important collaborations in Rule 110 research by Profs. Harold V. McIntosh and Juan Carlos Seck Tuoh Mora
- Personally to Profs. Katsunobu Imai and Andrew Adamatzky by invited me to present this talk in IWNC 2006
Figure: Glider gun by collision among particles with OSXLCAU21 system. The regular expression is: \(e^+ - D_1(C,f_{3\cdot1}) - e - C_1(A,f_{1\cdot1}) - e - \bar{E}(B,f_{1\cdot1}) - e^+ \).